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Abstract: 

In this paper, a three-step collocation and interpolation technique is used to solve first order initial value 

problems of ordinary differential equations. The three-step method was developed using Power series 

polynomials as the basis function, and the method was augmented by the addition of off-step points to bring 

zero stability and upgrade the order of consistency of the new method. The derived continuous scheme has the 

advantage of producing several outputs of solution at off-grid points without the need for additional 

interpolation. To confirm the method's efficiency and accuracy, numerical examples are solved using the 

MAPLE 18 software package.  
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Introduction 

An Ordinary Differential Equation (ODE) is an equation 

involving the function's ordinary derivatives. Differential 

equations are a major area of mathematics with a variety of 

methods and solutions. A well-posed differential equation 

problem consists of at least one differential equation and at 

least one additional equation such that the system as a whole 

has one and only one solution (existence and uniqueness) 

known as the analytic or exact solution. Furthermore, this 

analytic solution must be continuously dependent on the data 

in the sense that if the equations are slightly changed, the 

solution does not change significantly. The goal of this 

research is to find the solution to a first-order differential 

equation using a numerical linear multistep method 

Abubakar et al. (2014). ODEs are numerically solved using 

linear multistep methods. A numerical method starts from an 

initial point and then moves forward in time to find the next 

solution point. The procedure is repeated in order to map out 

the solution. To determine the current value, the single-step 

method uses only one previous point and its derivative. A 

method like Runge-Kutta efficiently takes some 

intermediate steps by keeping and using information from 

previous steps rather than discarding all previous 

information before proceeding to the next step, Adee et al. 

(2005). Some authors in the literature that solved ordinary 

differential equations using numerical approach includes: 

Awoyemi (2001),(2005), Awoyemi et al. (2005), Ayinde 

et al. (2015), Chu et al. (1987), Fatunla (1988), (1994), 

Jator (2007), Jator et al. (2009), Kayode (2005), Lambert 

(1973), (1991), Omar et al (2003), (2005), Onumanyi et al. 

(1999), (2001), to mention but few. Umar et al.  (2019) 

considers interpolation and collocation of rational 

approximate solution to give a continuous one step non-

linear method for the solution of stiff initial value problems. 

The continuous method was evaluated at selected grid points 

to give discrete methods which are implemented in 

predictor-corrector method. The developed methods are 

found to be convergent and L-stable. Ajileye et al. (2017) 

presented  an implicit one-step method with three off-grid 

points for numerical solution of second order initial value 

problems of ordinary differential equation has been 

developed by collocation and interpolation technique. The 

one-step method was developed using Laguerre polynomial 

as basis function and the method was augmented by the 

introduction of off-step points in order to bring zero stability 

and upgrade the order of consistency of the method. 

In this work, We consider first order ordinary differential 

equation with initial value problem of the form  

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0         (1) 

on the interval [a, b] has given rise to two major discrete 

variable methods namely, single (one) step method and 

multistep methods commonly known as linear multistep 

method (LMMs). 

The linear multistep method of a k-step for determining the 

sequence {𝑦𝑛} take the form of linear relationship between 

𝑦𝑛+𝑗 , 𝑓𝑛+𝑗 , 𝑗 = 0,1,2,3, … , 𝑘. The general linear k-step can 

be written as 

∑ 𝛼𝑗𝑦𝑛+𝑗 = ℎ𝜇 ∑ 𝛽𝑗𝑓𝑛+𝑗
𝑘
𝑗=0

𝑘
𝑗=0         (2) 

Where 𝛼𝑗 𝑎𝑛𝑑 𝛽𝑗 are constants. We assume that 𝛼𝑘 ≠ 0 and 

that not both 𝛼0 and 𝛽0 

are zero. 

When µ= 1, then, the linear k-step as linear multistep method 

can be written as; 

∑ 𝛼𝑗𝑦𝑛+𝑗 = ℎ ∑ 𝛽𝑗𝑓𝑛+𝑗 .   𝑘
𝑗=0

𝑘
𝑗=0         (3)                                 

we generate continuous linear multistep method with k =3 

using the power series as a basis function.  

 

Methodology 

In this section, we derive a continuous representation of 

three-step method with three off-grid points to generate the 

main method and other methods required to set up the block 

method. We consider Power Series Polynomial of the form: 

𝑦(𝑥) = ∑ 𝑎𝑗
𝑘
𝑗=𝑜 𝑥𝑗          (4) 

On the partition 

  𝑎 = 𝑋0 < 𝑋1 < ⋯ < 𝑋𝑛 < 𝑋𝑛+1 <
⋯ < 𝑋𝑁 = 𝑏 

On the integration interval [a, b], with a constant step size h, 

given by 

ℎ = 𝑋𝑛+1 − 𝑋𝑛; 𝑛 = 0,1, … 𝑁 − 1. 
Equation (4) is differentiated once to obtain equation of the 

form: 
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𝑌′(𝑥) = ∑ 𝑎𝑗𝑗𝑥𝑗−1𝑘
𝑗=0 = 𝑓(𝑥, 𝑦)   

           (5) 

We will interpolate at 𝑥 = 𝑥𝑛+𝑖 , 𝑖 = 0 in equation (4) and 

collocate at 𝑥𝑛+𝑖 , 𝑖 = 0,
1

2
, 1,

3

2
, 2,

5

2
, 3 in equation (5) so as to 

obtain a system of eight equations each of degree seven (i.e. 

k=7) of the form: 

UAX       

     (6) 

where  
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We solve equation (6) using MAPLE 18 software package to obtain the value of the unknown parameters  

10 
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Substituting the values for 𝑎𝑗and  𝛽𝑗into equation (4) to yields a continuous hybrid three-step method of the form:  

𝑌(𝑥) = 𝛼0(𝑥)𝑦𝑛 + ℎ[∑ 𝛽𝑗(𝑥)𝑓𝑛+𝑗 + 𝛽1

2

(𝑥)3
𝑗=0 𝑓

𝑛+
1

2

+ 𝛽3

2

(𝑥)𝑓
𝑛+

3

2

+ 𝛽5

2

(𝑥)𝑓
𝑛+

5

2

]        (7) 

Where 𝛼𝑗(𝑥)𝑎𝑛𝑑 𝛽𝑗(𝑥)are continuous coefficient 𝑦𝑛+𝑗 = 𝑦(𝑥𝑛 + 𝑗ℎ) is the numerical approximation of the analytical solution 

at 𝑥𝑛+𝑗𝑎𝑛𝑑 𝑓𝑛+𝑗 = 𝑓(𝑥𝑛+𝑗 , 𝑦𝑛+𝑗 , 𝑦𝑛+𝑗
,

).                               

We evaluate equation (7) at 𝑥𝑛+𝑖 , 𝑖 = 0,
1

2
, 1,

3

2
, 2,

5

2
, 3  to give discrete schemes of six equations.  
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STABILITY ANALYSIS 
The block method is defined by Fatunla (1988) as; 

𝑌𝑚 = ∑ 𝐴𝑖

𝑘

𝑖=0

+ ℎ ∑ 𝐵𝑖

𝑘

𝑖=0

𝐹𝑚−𝑖 

𝑤ℎ𝑒𝑟𝑒 𝑌𝑚 = [𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2, … , 𝑦𝑛+𝑟−1]t 

𝐹𝑚 = [𝑓𝑛 , 𝑓𝑛+1, 𝑓𝑛+2, … , 𝑓𝑛+𝑟−1]t 

𝐴𝑖
′𝑠 𝑎𝑛𝑑 𝐵𝑖

′𝑠 are chosen r x r matrix coefficient and 𝑚 = 0,1,2 … represents the block number, 𝑛 = 𝑚𝑟, the first step number in the 

m-th block and r is the proposed block size. 

The block method is said to be zero stable if the roots of 𝑅𝑗𝑗 = 1(1)𝑘 of the first characteristics polynomial is  

𝜌(𝑅) = det [∑ 𝐴𝑖𝑅𝑘−1

𝑘

𝑖=0

] = 0, 𝐴0 = 𝐼  

 Satisfies |Rj|≤ 1, if one of the roots is +1, then the root is called Principal Root of 𝜌(𝑅). 
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𝜆6(𝜆 − 1) = 0 

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 = 0 𝑜𝑟 𝜆6 = 1 

We can see clearly that no root has modulus greater than one (i.e. 𝜆≤1). The hybrid block method is zero stable. 

 CONVERGENCE 
Zero stability and consistency are sufficient conditions for a linear multistep method to be convergent. Hence, since our hybrid 

block method is zero stable and consistent, it can be concluded that our method is convergent for all our cases. 

REGION OF ABSOLUTE STABILITY (RAS) 

A numerical integrator is said to be A-stable if its region of absolute stability R  incorporate the entire left hand of the complex 

plane denoted by C  i.e.   0/  zreCzR
 

We shall adopt the boundary locus method to determine the region of absolute stability of our method. The stability polynomial is 

gotten using scientific workplace software. This gives 
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The Region of Absolute Stability of our method is plotted using MATLAB 2010 version.  

 

NUMERICAL ILLUSTRATION 

In order to confirm the efficiency and accuracy of the proposed method, we considered two problems. Our results from the proposed 

methods are compared with the existing methods. All calculations and programs are carried out with the aid of Maple Software. 

Problem 1 

𝑦′ = 𝑦, 𝑦(0) = 1, ℎ = 0.1 

Exact Solution: 𝑦(𝑥) = exp(𝑥) 

Source:Ayinde et al. (2015) 

 

 

 

Problem 2 

𝑦′ = −𝑦, 𝑦(0) = 1, ℎ = 0.1 

Exact Solution: 𝑦(𝑥) = exp(−𝑥) 

Source:Abubakar et al. (2014) 
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Table 1: The exact solution and the computed results from the proposed method for problem 1 

 

 

 

Table 2: The exact solution and the computed results from the proposed method for problem 2 

 

 

 

x Exact Solution 

 

 New Method  Error in New method  

  

Error in  Ayinde et al 

(2015) 

0.1 1.105170918075650 1.105170918075220 4.30000e-13 1.22622104e-005 

0.2 1.221402758160170 1.221402758159720 4.50000e-13 1.35518383e-005 

0.3 1.349858807576000 1.349858807575870 1.30000e-13 1.49770976e-005 

0.4 1.491824697641270 1.491824697640550 7.20000e-13 1.655225270e005 

 

0.5 1.648721270700130 1.648721270699350 7.80000e-13 1.82930683e-005 

0.6 1.822118800390510 1.822118800390160 3.50000e-13 2.02169671e-005 

0.7 2.013752707470480 2.013752707469320 1.100000e-13 2.23432041e-005 

0.8 2.225540928492470 2.225540928491200 1.270000e-13 2.46930594e-005 

0.9 2.459603111156950 2.459603111156240 7.10000e-13 2.72900511e-005 

1.0 2.718281828459050 2.718281828457210 1.840000e-13 

 

3.016017084e-005 

x Exact Solution 

 

 New Method  Error in New method  

  

Error in  Abubakar et al (2014) 

0.1 0.904837418035960 0.904837418035712 2.480000e-13 3.60E-11 

0.2 0.818730753077982 0.818730753077754 2.280000e-13 4.22E-06 

0.3 0.740818220681718 0.740818220681788 7.00000e13 7.6E-06 

0.4 0.670320046035639 0.670320046035519 1.20000e-13 1.03E-05 

0.5 0.606530659712633 0.606530659712522 1.11000e-13 1.24E-05 

0.6 0.548811636094026 0.548811636094132 1.06000e-13 1.41E-05 

0.7 0.496585303791410 0.496585303791369 4.1000e-14 1.52E-05 

0.8 0.449328964117222 0.449328964117183 3.9000e-14 1.15E-05 

0.9 0.406569659740599 0.406569659740716 1.17000e-13 1.66E-O5 

1.0 0.367879441171442 0.367879441171447 5.0000e-15 1.69E-05 
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Conclusion 

In this paper, we developed a block method with three hybrid 

points for the solution of first-order initial value problems in 

ordinary differential equations. Our method was found to be 

efficient and accurate. The numerical results as shown in 

tables 1 and 2 indicate that our method is computationally 

reliable and gives better accuracy than the existing methods. 
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